
NASA-TM-111499 ""

Goal Directed Model Inversion:

A Characterization of Learning Behavior

SILVANO COLOMBANO

AMES RESEARCH CENTER

MICHAEL COMPTON

HELEN STEWART

MARTIiA DEL ALTO

RECOM TECHNOLOGIES

ARTIFICIAL INTELLIGENCE RESEARCH BRANCH

NASA AMES RESEARCH CENTER

MAIL STOP 269-2

MOFFETT FIELD, CA 94035-1000

Submitted a revised version to the Artificial Neural Networks in Engineering (ANNIE'93)

November 14-17, 1993, St. Louis, MO.

NASA Ames Research Center

Artificial Intelligence Research Branch

Technical Report FIA-93-16

August, 1993





Goal Directed Model Inversion:
a Characterization of Learning Behavior

Silvano P. Colombano, Michael Compton*,
Helen Stewart* and Martha DelAIto*

Information Sciences Division
NASA Ames Research Center

MS 269-2
Moffett Field CA 94035

*RECOM Technologies

Abstract

Goal Directed Model Inversion (GDMI) is an algorithm designed to generalize
supervised learning to the case where target outputs are not available to the
learning system. The output of the learning system becomes the input to some
external device or transformation, and only the output of this device or
transformation can be compared to a desired target.. The fundamental driving
mechanism of GDMI is to learn from success. Given that a wrong outcome is
achieved, one notes that the action that produced that outcome "would have been
right if the outcome had been the desired one". The algorithm makes use of these
intermediate "successes" to achieve the final goal One issue for an earlier version
of GDMI was referred to as "the priming problem" and relates to the relative
difficulty in achieving the very first external target. In this paper we report
modifications to the GDMI algorithm which eliminate the priming problem.

Key Word 1: Learning Algorithms and Training
Key Words 2: Adaptive Learning, Algorithm, Extrapolation, Neural Controller,
Nonlinear Dynamic Systems, Nonlinear System Modefing, Process Control,
Recurrent NN, Robotics, Supervised Learning, System Modefing, Inverse System
Modeling, Model Inversion, Dystal Supervision

1. Introduction

One of the fundamental requirements in supervised learning with neural networks is
that the output of the network has to be compared with a desired set of targets. A
typical operation is thus to present the network with a set of input-output pairs to
affect the needed training, and to test the trained network on unseen data in order to
get an estimate of its precision.

There is, however, a wide range of problems where the supervised learning
approach cannot be applied. This is the case where there is no known target for the
output of the network. Rather, this output is fed to an external system, which, as a
consequence, performs some action. The final outcome of this action is then
compared with a desired output target (Fig. 1). A typical example is a neural
network controller. The output of the neural network determines the action that, say,
a robot arm might take to reach a goal. Note that, in this case, any difference
between the desired goal and the position actually achieved is still an obvious
measure of error, but it gives no guidance as to what the targets of the output units



of the neural network controller should have been. This error is in "robot goal space"
not "action space" and, in terms of a neural controller, there is no meaningful way to
apply this error to the output units of the controller. These units would, in general,
code for values of joint angles, currents to motors etc. while the output error might
simply be a distance between the target and the end effector.

(target not available here) Compare with Target

Neural Network
Action

_ External System

____.1_. External
Outcome

Figure 1. Generalized Supervision. The target is not available at the neural net
output.

Our problem is how to make use of the information provided by that "distant" error.
This has also been called learning with a "distal teacher" (Jordan and Rumelhart,
1989). Three approaches are possible: unsupervised learning (e.g. Kohonen 1990,
Jorgensen 1990), reinforcement learning (e.g. Barto et. al. 1983, Williams 1988,
Berenji and Khedkar 1992) and model inversion. A discussion of the first two
approaches is beyond the scope of this work and we leave it to the references cited.
Here we briefly discuss the third approach and suggest a new technique based on
the model inversion concept. We have called this technique "Goal Directed Model
Inversion" (GDMI).

A preliminary version of GDMI was presented in previous publications (Colombano
et. al. 1992a, b) in the context of the inverse kinematic problem for a simulated
robotic arm with three degrees of freedom. One problem noted with that version of
GDMI was that the first goals presented to the system had to be very "easy". This
lack of generality in the initial goal seeking behavior was called "priming problem".
In this paper we show how this problem can be overcome and we begin studying
the system, with systematic experimentation.

2. Model Inversion

Two techniques have been utilized for model inversion. One has been called "Direct
Inverse Modeling", and the other "Forward Modeling" (Jordan and Rumelhart, ibid.).
For the latter we prefer to use the name "Indirect Inverse Modeling". The reason for
this preference will become evident when we describe the technique.

3.1 Direct Model Inversion

Direct Model Inversion is illustrated in figure 2. The neural network is trained to
create an inverse model of the system which is to produce a desired output. The
space of possible "actions" is sampled at random, and the external system produces
the corresponding outputs. Each output becomes the input to a neural network
which is then trained to produce the corresponding action. More succinctly: input-
output pairs are obtained from the real system and are used, respectively, as the
output-input pairs of the neural net (i.e. they are reversed).



Action (t - 1) System

I State (t-l)

(
+ /

Model

/
Figure 2. Direct Mode/Inversion

v"- Goal (t)

This approach can be successful in some situations, but it may not be able to
achieve correct results in "many to one" mappings, i.e. when different actions
achieve the same goal. The reverse mapping of goals to actions will, in general,
produce an average of these correct actions. But averaging over correct actions will
not necessarily produce a correct action (Jordan and Rumelhart ibid.). Another
disadvantage of this technique is that sampling to obtain the input-output pairs must
be done in action space. It is often more desirable to sample in the areas of interest
to the external system, Le. in goal space.

3.2 Indirect Inverse Modeling

The Indirect Inverse Modeling technique involves the following steps:

1) A forward neural network model of the system is produced. This model is simply a
neural network simulation of the external system. It is trained by obtaining input

Action (t- 1) ...._ External

T System

State (t-l) ]

_ i_ F°rwar_

Model

Outcome (t)

Figure 3. Forward System Modeling. This is the first step required in the creation
of an indirect inverse mode/.



output pairs from the external system and by using them to train the neural net (Fig.
3). The algorithm typically used for training is Backpropagation (e.g. Rumelhart and
McClelland, 1986). This simulation is not a reverse model: inputs and outputs of the
system are also, respectively, inputs and target outputs of the neural net.

2) After the forward model has been adequately trained, another neural net, the
one that will be trained to become an inverse model, is attached to the first one, so
that its outputs become the inputs of the forward model.

3) Any desired system goals G are presented to this second net (inverse model).
The output of this net is then presented to the external system to produce the actual
outcome.

4) The actual outcome of the system is compared with the desired goal and an error
is obtained. As pointed out earlier, this error is not meaningful to the model
inversion net, which needs error signals in action space, but it is consistent with the
output of the forward model, which is also in goal space.

5) Since the error determined in step 4 is in goal space instead of in action space,
as required by the inverse model, the error signal is fed back through the forward
model with techniques such as Backpropagation, until it reaches the output units of
the inverse model. At this point the error is "meaningful" to the output units of the
inverse modeling network and Backpropagation can proceed through this network
in order to change the weights. Note that the weights of the forward model are not
changed during this phase.

The Indirect Inverse Modeling process is shown in figure 4 and is explained in
greater detail in Jordan and Rumelhart (ibid) and Jordan (1989). A version of this
approach was used to train the "truck backer-upper" controller (Nguyen and
Widrow, 1989). Training this controller required the evaluation of a sequence of

Desired Obtained
Goal Outcome

Inverse
Model

Acuon

Forward
Model

Distal

Error

Figure 4. Indirect Inverse Modeling. The dashed fine signifies that the distal error

is propagated backwards through the forward model without changing its weights.
Only the inverse model is being trained in this phase. System state information has
been ignored for simplicity.



control actions rather than a single one, and the solution was obtained by unfolding
steps 4 and 5 through time.

The advantages of Indirect Inverse Modeling are twofold: learning can proceed in a
Goal Directed manner since the goals to be learned are presented at the input of
the combined neural net, and the many-to-one mapping problem is obviated by the
fact that a particular action will be chosen to achieve a desired goal.

A drawback is that a forward model must be created before training of the inverse
model can take place. This drawback, however, is not as severe as it might seem
because an approximate model is, generally, sufficient. In a sense, the role of the
forward model is to act as an inverse transformation of the error from goal space to
action space. From this point backwards, the inverse model learns to compensate
for inaccuracies of the forward model.

The technique we propose, Goal Directed Model Inversion, extends this concept
further by making a forward model unnecessary while retaining the desirable
feature of being goal directed.

3. Goal Directed Model Inversion

We start by presenting an untrained multilayer network (for generality) with the
desired goal G and the present state S of the external system, coded in some
convenient way to provide the activation of the input layer. The output of the network
is decoded into an action A that, when executed by the system, will produce the
desired goal. Generally, the first action produced by an untrained network will not
produce the desired goal, but an alternate outcome, G'.

Here is where our scheme differs from both Direct and Indirect Inverse Modeling:
no error is fed back from goal space, instead, the goal G' that was actually reached
is presented to the same network for a training pass. The output of this second pass,
A', is not executed by the external system and is used only to train the network in the
following way: an error is determined by comparing A' with A (which takes on the
role of a target output), and is used to modify the weights by some convenient
algorithm such as Backpropagation. After the weights have been modified, the
original G is presented to the network again, a new action A is produced and the
cycle continues.

Learning ceases when A = A'. This is clearly the case when G = G' , but,
unfortunately, it is also rather easy for the system to produce a net that will output A
= A' when G differs from G'. In our first version of GDMI this situation could be

avoided in an "ad hoc" fashion by making the first goals very easy. The user had to
note the position of the arm which was produced by the untrained system and had
to place the very first goal close to it. After that goal was reached a second goal
could be placed a bit farther, and so on. This process made it difficult to conduct a
systematic study of the algorithm and we referred to this shortcoming as a "priming
problem".

We have now found a better solution. When the above situation is encountered we

simply do not allow the system to stop learning. If G differs from G' and A = A' then
A is perturbed to produce a new action A*. Typically the second pass-through does



not produce the same A* and the learning cycle begins again. Within the limits
explained below, any goal for which a solution exists will be reached. This makes it
possible to start systematic studies of this process.

We have no mathematical proof for the convergence of this system, but we are
gathering empirical evidence that non-trivial solutions can usually be found. In
these cases driving A' towards A drives G' towards G. Note that G remains constant,
but A does not and provides a slowly shifting target. This process is illustrated in
figure 5.

First Pass-through

G
External "_ G'
System

Figure 5. Goal Directed Model Inversion. The achieved output G' is presented
again as input to the neural net, and the new action A' is compared with the action A
found during the first pass. The net is modified to minimize this error and the cycle is
repeated until G' is sufficiently close to G. State information is ignored in the
drawing.

The following considerations provide some intuition of why convergence can occurr.
The GDMI process is driven more by success than by error. What we are really
saying to the system is: "you did not reach G as requested, but, had you been
requested to reach G', you would have produced the correct action A, so you do
know something about reaching G' and we can build on it". Repetition of this
process drags G' "like a carrot" towards G. Success hinges on whether learning to
reach G' gives the system some useful information on how it might reach the
original goal G. If the two tasks were completely different or required incompatible
strategies then success on G' would not help, but it is easy to imagine domains
where such tasks are sufficiently similar to have a cumulative positive effect.



Typical "on-line" supervised learning makes similar assumptions. Error corrections
due to incoming input-output pairs generally have the cumulative effect of lowering
the error on future input-output pairs.

4. Preliminary experiments

We tested the GDMI process on a simulated planar robotic arm with three degrees
of freedom. The goal G is specified as the position of the end effector in x,y
coordinates and the action A specifies a set of angles for the arm joints. These
angles are executed by the arm which moves the end effector to the corresponding
position G' and, ultimately G.

4.1 Learning Behavior

Given any goal G in the space that is reacheable by the arm, the system succeeds
"almost always" (figure 6). By this we mean that typically the number of iterations
required for success has some variablity which depends on the number of hidden
units (more on this below), but, occasionally (about one in one hundred times for
this problem), the system appears to get trapped in a limit cycle or in a very long
spiral towards the goal. This suggests including a "patience" parameter for
providing a "jolt" in the same fashion as when the systems stops learning before
reaching the goal.

4.2 Effect of hidden layer

The number of units in the hidden level, not surprisingly, has considerable effect on
the system's ability to learn. This was quantified in an experiment where goals A, B
and then A again were given to the system consecutively, without changing the set
of weights. This was designed to see 1) the effect of having achieved goal A on the
ability to achieve goal B and 2) how much the system "forgot" about goal A in the
process of achieving goal B.

The experiment shows that the system takes the longest and shows most variability
while achieving the first goal. The second goal is then achieved more readily and
with less variability. Finally, returning to the first goal shows that some "forgetting"
occurs but a new set of correct weights is found again, with the least number of
iterations and the least variability. The effect of increasing numbers of hidden units
is to increase the speed with which the system achieves its goals and to decrease
the variability ( figure 7). Note that the graph for 45 hidden units shows an apparent
contradiction of this trend in the standard deviation for the "return to A" (single
asterisk in the figure). This large standard deviation was actually due to a single
case in which the system was trapped in a very long spiral towards the goal, as
explained above. The only other limit cycle was encountered in reaching goal A for
the first time, with 15 hidden units (double asterisk in the figure). In this case the
runs was interrupted and the point was not included in the calculations.

The general trend shown by the experiment was not surprising, but it is interesting
to note that within the limits explored, the number of hidden units is not crucial to
the ability to attain any particular goal. There is a trade-off between the number of
hidden units and the speed and variability with which the goals are attained. This



Hand Position = (-21,113)

Goal = (68, 104)

A

,I

m

C

Figure 6. A typical learning sequence: A) starting condition, B) goal overshoot, C)
goal achievement.



Number

of iterations

20000
iw

15000

10000

5OO0

0

-5000

-I0000

A
|,

A
B A A A

I
..i.

15 hidden 30 hidden 45 hidde 60 hidden
units units units units

-15000

Figure 7. Learning to reach A, then B, then A again: Different numbers of hidden
units affect the speed and variability of how quickly goals are reached. The asterisks
are explained in the text.

ndicates that the systems is robust with respect to the ability to solve problems
provided, at least for now, that time is not a crucial factor.

The simulations were run on a Macintosh II computer, and the Backpropagation part
of the GDMI system was adapted from the software provided in McClelland and
Rumelhart 1989.

4.3 Adaptation to external system changes

GDMI requires no model of the external process. The implication of this fact is very
powerful, since the external process is then allowed to change in unexpected ways.
Under similar circumstances Indirect Model Inversion might instead require
retraining of the forward model. We say "might" because Indirect Model Inversion
only requires an approximate model of the external system, it can, therefore, cope
with small changes. GDMI does not even need an approximate model. It builds a
model of the process while it is learning to control it.

The potential importance of this property can be seen by "freezing" one of the joints
of the simulated robot arm. If the frozen joint does not make a given goal



unreacheable, the system treats this case as anew problem and finds a solution as
described above.

4.4 Multiple Constraints

There is also no limit (in principle) to the number of goals that can be
simultaneously satisfied. This provides a mechanism for imposing any number of
constraints. In our example these might relate to desired arm configurations and
obstacle avoidance.

5. Future extensions

As already pointed out by Jordan and Rumelhart (ibia'), Model Inversion is really a
powerful generalization of supervised learning. Robotic arms provide good visual
examples, but the concept applies to any type of transformation from the output of
the network to the output of the external system. Guidance and control are obvious
applications, but the concept can be extended even further. For example, the
external system could be a simulation of a complex machine we wish to diagnose.
Given specific faults it is relatively easy to determine, by simulation, what the effects
or symptoms would be. The inverse is what we need for diagnosis: given the
symptoms find the causes. With GDMI we could teach a net to produce causes
given the symptoms. The symptoms become the system "goals", and the causes
become the "actions". We are presently exploring these concepts.

In general this suggests a way to combine induction and deduction for problem
solving. Note also that the supervised learning component of GDMI, which was
implemented for expediency as a Backpropagation network, is certainly not limited
to neural network implementations.

Another consideration is that learning in this sytem is "on line", i.e. the learning
component is never exposed to the same input data. This leads to the notion of
learning by exploring the behavior of some unknown system without making
assumptions about its complexity and in a non pre-planned way. A promising
possibility is to enable the system to modify the architecture of its own learning
component to increase its own learning power as needed.

7. Conclusions

We have developed a technique, called Goal Directed Model Inversion (GDMI), for
training a multilayer neural network to elicit desired outputs from a generic external
system. This technique differs from previously developed techniques in that it is both
goal directed and requires no forward model of the external system. This property
allows GDMI to cope with unexpected changes in the external system. We have
conducted preliminary experiments that show that the desired goal is usually
reached although the search can, occasionally, get trapped in a limit cycle. A
remedy to this problem will be the object of further studies. Except for this
occasional problem, the ability to reach any given goal is not greatly affected by the
number of hidden units. Given an adequate number of these units, experiments
show that the system trades off speed and the ability to "remember" previous actions



for the ability to reach the last given goal. GDMI was tested on a robotic simulation
but its general applicability to a broad range of systems is suggested.

8. References

Barto, A.G., Sutton, R.S. and Anderson, C.W. "Neuronlike adaptive elements that
can solve difficult learning control problems". IEEE Transactions on Systems, Man

and Cybernetics SMC-1 3:834-846, 1983.

Berenji, H.R. and Khedar, P. "Learning and Tuning Fuzzy Logic Controllers Through
Reinforcements". IEEE Transactions on Neural Networks, Vol 3, No 5:724-740,
1992

Colombano, S.P., Compton M. and Bualat, M. "Goal Directed Model
Inversion: Adaptation to Unexpected Model Changes" Proceedings to Neuro-
Nimes '91, 269-278, Nov. 1991.

Colombano, S.P., Compton M. and Bualat, M. "Goal Directed Model
Inversion" Proceedings to the International Joint Conference on Neural
Networks Vo1111:2422-2427, Nov. 1991.

Jordan, M.I. and Rumelhart, D.E. "Forward models: Supervised learning with a distal
teacher". Occasional paper # 40, Center for Cognitive Science, MIT, 1989.

Jordan, M.I. "Generic Constraints on Underspecified Target Trajectories".

Proceedings to the International Joint Conference on Neural Networks, Vol 1:217-
225, 1989.

Jorgensen, C.C. "Distributed Memory Approaches for Robotic Neural Controllers".
RIACS Technical Report 90.29. Research Institute for Advanced Computer Science,
NASA-Ames, Moffett Field CA 94035, 1990.

Kohonen, T. "The Self-Organizing Map", Proceedings of the IEEE, Vol 78, No.
9:1464-1480, 1990.

McClelland, J.L. and Rumelhart, D.E. "Parallel Distributed Processing: Explorations

in the Microstructure of Cognition, a Handbook of Models, Programs and Exercises",
Vol 3, The MIT Press, 1989.

Nguyen, D. and Widrow, B. "The Truck Backer-Upper: An Example of Self-Learning
in Neural Networks". Proceedings to the International Joint Conference on Neural
Networks, Vo111:357-363, 1989.

Rumelhart, D.E. and McClelland, J.L. editors. "Parallel Distributed Processing:

Explorations in the Microstructure of Cognition", Vol 1, Chapter 8. The MIT Press,
1986.

Williams, R.J. "Toward a Theory of Reinforcement

Systems". Technical Report NU-CCS-88-3, College
Northeastern University, 1988.

Learning Connectionist
of Computer Science,








